Title:	Transitional Project I
Lecture hours:	30 Kon
Lecture nours.	
Study period:	Winter, summer
(summer/winter)	
Number of credits:	6
Assessment methods:	Written report on conducted laboratory project
I anguage of instruction:	English
Duonoquigitage	Lingiisii Matariala Saianaa
Prerequisites:	
Course content:	Realization of materials engineering research projects (e.g. adhesive joints of
	engineering materials, designing composite structural elements; metallization of
	polymeric materials; development of materials resistant to thermal and UV
	degradation; laser surface modification technique, plasma and corona discharge
	surface modification techniques; biodegradation of polymeric materials). The final
	field of the project for realization will be established individually with students.
Learning outcomes:	Student will be familiar with properties of the examined materials and many
	modern laboratory testing and treatment methods, e.g.: differential scanning
	calorimetry (DSC); dynamic mechanical analysis (DMA), thermogravimetry
	(TGA), tensile and impact strength measurements, laser, plasma or corona surface
Name of lasturar:	Dr hab Diotr Bytlewski
Name of fecturer.	Di nadi. i toti Kytewski
Contact (email address):	<u>prytlewski@ukw.edu.pl</u>
Literature:	The literature will be established individually according to the selected
	experimental project. Some respective examples are given below:
	1. Rytlewski et al.: Laser-induced surface activation and electroless
	metallization of polyurethane coating containing copper (II) L-tyrosine,
	Applied Surface Science 2020, 505, 144429
	2. Rytlewski et al.: TG-FTIR coupled analysis to predetermine effective
	of Thermal Analysis and Calorimetry 2020 1/1 607 705
	3 Rytlewski et al.: Flax fibers reinforced polycaprolactone modified by
	trially isocyanurate and electron radiation, Polymer Composites 2019,
	40, 481-488.
	4. Rytlewski et al.: Laser-induced surface activation of biocomposites for electroless
	metallization, Surface and Coatings Technology 2017, 311, 104-112.